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Abstract

The extent of plastic flow in a spherical solid (assumed to

be homogeneous and elastically and plastically isotropic) surrounding

a concentric rigid sphere as a function of applied external pressure

is calculated. The applied pressure necessary to cause plastic

deformation throughout the solid is obtained.



INTRODUICTION

When a solid matrix surrounding a rigid sphere is pressurized,

the rigid particle acts as a stress concentrator. The radial press-

ure at the interface at the rigid sphere exceeds the external

hydrostatic pressure. When the applied pressure is increased

sufficiently, yielding of the matrix begins at the interface. This

is a well known phenomenon and can be observed around inclusions

in solids where dislocations are punched out. 1 The pressure which

causes the onset of yielding is available from earlier calculation

from linear elasticity theory and.Tresca or von Mises yield

criteria. In the present paper we calculate the extent of

plastic flow versus applied pressure and finally obtain the

applied pressure necessary to cause plastic deformation through-

out the solid.. The present analysis assumes that there is no

strain hardening.

In the present paper external pressurization of a medium

surrounding a rigid spherical inclusion is studied. Two methods

are used. The first, developed here, leads more easily to the

solution than the second, which is the technique used by Hill 2

for studying the internal pressurization of a hollow sphere.



THEORETICAL

Consider the matrix of external radius b surrounding a rigid

sphere of radius a. The boundary conditions are that the radial

component of stress is given by

arr= -Pext at r=b (1)

and the radial component of displacement is given b)y

u = 0 at r = a (2)

Elastic Behavior

At sufficiently small values of Pext' the material behaves

everywhere in a linear elastic manner. The stresses then have

the form

a= A + B3 (3)
rr r

a6@= A -2 B (4)

and the radial displacement is given.by

r = r [OO-v(0+ rr) ]  (5)

Here EO is the circumferential strain, E is Young's modulus,

v is Poisson's ratio and we have used the fact that a =a.



From these five equations,the stal:e of stress can be readily

ascertained. The pressure which causes the onset of yielding

can be obtained using Tresca's or von Mises' yield criteria

( which are identical for the sphere):

CT - rr ao (6)

where a is the yield stress in simple tension. This leads to the

result that yielding (designated by an asterisk) begins when

P { (1+v) 2Kj (7)
ext 3 I-2v) 0

where K=b/a.

When yielding begins the contact pressure at r=a for v=1/3

P. = 20 0 (8)Int o

(We note that P. P for large K.)Int 2 ext

Elasto-Plastic

Here the material is elastic for r>c and plastic for r<c. In

the plastic region the stresses are determined by Equation (6)

and the boundary conditions. The elastic strains in the plastic region

are obtained from these stresses using Hooke's laws. It is

assumed that strain hardening is absent, i.e., a0 does not vary

with the extent of plastic deformation. The stresses are continuous

at the elastic-plastic boundary, r=c.



The boundary conditions for Ihe elastic region are

000- rr . 0  at r=c (9)

and

rr = -Pext at r=b. (10)

The solution for the elastic region is

2 c 3 b 3

0 = -P -3 o 3 (- 3 - 1). (11)rr ext 3 ob r

and

2 c 3 b 3
00 =-Pext +0 3 3+1) (12)

The displacement in the elastic region is

u= r[(1-2v)(-P 2 o c3/b 3 )+(1+) a c3/r "3 ] (13)1=  ext+- 0 3 0

The general solution in the plastic region can be obtained

from the equation of radial equilibrium, namely

rdo

drrr + 2( rr-o )=0 (14)

and Equati.on (6). The result is

o = 2o Rnr +D
rr o

where D is an integration constant which can be evaluated by the

requirement of continuity of 0 rr at r=c. Then we have

- 2o nc p 2 c 3

r o r ext 3o 1-3 (i )



The local volume dilation in the plastic region is given by

AV ( (I2v) (2) +3vr) (16)
V E + arr E rr

The total change in volume of the plastic region (whose inner

radius is constant a and outer radius is c) is therefore

C

(1-2v)(2ao+3orr)4r dr=4 c2 u(c) (17)

a

The value of orr is given by Equation (15) while u(c)

follows from (13) with r set equal to c. It follows that

= (i-v) -2 n /b) (18)ext - ) (c/a) o 3 o

For the fully plastic condition (labelled with double asterisk)

c-b and (for v=1/3)

Pe = 2a oK - 20o nK, (19)ext o 0

and

Pint - Pext = 2a 0nK. (20)

For the case where K is only slightly greater than one(the thin

£im
shell) we have from (19) Kl Pext = 2o

as required since for a thin shell Orr does not vary across the

shell and the entire shell yields simultaneously as given by (8).



The ratio P /Pext vs K for v=l/3 is shown in Table 1.ext ext

Table 1. Ratio of pressure needed to cause
plastic flow throughout matrix over pressure
needed for onset of plastic flow versus radius
ratio. Based on Poisson ratio of one-third.

K Pext o Pext/o Pext /Pext

1 1 1 1

2 7.31 0.71 10.3

3 25.90 0.68 38.1

As K becomes modestly large the pressure needed to cause plastic

flow throughout the matrix is enormous relative to the pressure

required for the commencement of plastic flow.

The extent of plastic flow for a given applied pressure and

given K can readily be written in terms of f i, the fraction of

the matrix which has undergone plastic deformation. Here

1-f = (b 3 -c 3 )/(b 3 -a) . (21)

Th.en (for v=1/3) from (18)

next 1 1
2xt (K 3 - l )f m+  -- n[(K 3 -1)fm+1]- (l-fm ) ( 1 - K -  (22

0

Curves of fm vs Pext/20 ° for K=1, 2 and 3 are shown in Figure 1.

For the cases considered here, the strains everywhere are five

percent or less (assuming 3(1-2v)o /E< 1/100) so the neglect of

strain hardening is justified unless the matrix has an unusually

rapid rate of strain hardening.



Alternate Method

This problem can also be solved following the technique described

by Hill. 2  The elastic stresses and displacements are identical

as those derived above. In the plastic region, the equation of

radial equilibrium again leads to the radial stress as in

Equation (15). Now following Hill's definition of the

velocity u of a particle,we find

S= /a (23)

in the elastic region; and

3u2u (1-2v) 3+,D( + (24)
+r~r - (-- +u)v +2 ) (24)

Br r E ac @r rr ee

in the plastic region. These velocities must be continuous at

r=c,the plastic-elastic interface.

Using the equations for the stresses in the plastic region,

(9) and (15),we can solve Equation (24) if we make the same

approximations that Hill makes; i.e. neglecting second and higher

orders of a /E, and neglecting au/ar with respect to 1. Matching

the velocities in the two regions gives the velocity in the plastic

region,
3(1-v) o c 2 2(1-2v)o C 3 C O

= E r (1- 3 +  c r/c (25)E r b 20 ac

when P is here written as a function of c.ext

Since u is defined as dr/dc we can rewrite Equation (25) in

terms of da/dc, the velocity of a particle at the inner boundary.

With an incompressible material in the center da/dc is just zero,

so we are left with an ordinary differential equation.



Solving this we find

et 2 a0 (c/b) 3-2o0 n(c/a)+ (1 v  (c/a) 3 +F (26)ext=3 o o (1-2v) 0o

where F is the constant of integration. We can calculate F

from the boundary condition that Pext=Pext for c=a. This gives

(liv) 2 3 2P _(- (c/a) 20 c1(c/a)+2(c/b) 0 -0 (27)
ext (1-2v) o  o o 3 o

For the fully plastic conditions

P (I-v) a K3 -2 nK (28)
ext TI-2v\) o o

This result agrees with Equation (19) in spite of the approximations

used in obtaining (28).

CONCLUSIONS

The pressure required to cause plastic deformation throughout

a homogeneous elastically and plastically isotropic sphere surrounding

a concentric rigid sphere is shown to be very large relative to

the pressure required for the onset of plas.tic flow. In fact, the

ratio of these pressures approaches 1.5K 3 for no strain hardening,

where K is the radius ratio, for large K. Note that the ratio

already approximates the large K limit for K=2 and K=3. For such

values of K, strain hardening effects usually can be neglected, while

for much larger K strain hardening would have to be taken into



account as would also nonlinear elastic effects.

For values of K of two or larger, the volume fraction of the

matrix,which has undergone plastic deformation, increases nearly

linearly with pressure above the critical pressure for the onset

of yielding.
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Figure Legends

Figure 1. Volume fraction of matrix which is plastically

deformed versus pressure for vaious K values.

Here v=1/3.

Figure 2. Ratio of internal pressure to external pressure vs

applied pressure for K=2 and 3 for v=1/3. The single

asterisk indicates the point of initiation of plastic

flow. The double asterisk indicates the point at which

.the sphere is fully plastic. The dashed line is the

region in which Equation (20) holds.
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Figure 2.


